Structural and Magnetic Characterization of Nanostructured Iron Acetate

Antônio Oliveira de Souza, Valdecir Biondo, Flávio Francisco Ivashita, Glécilla Colombelli de Souza Nunes, and Andrea Paesano Jr.

Structural and Magnetic Characterization of Nanostructured Iron Acetate

1. INTRODUCTION

Among other cations of transition metals, iron cations are widely used for doping of several semiconductors, due to its high magnetic moment and possibility of characterization by Mössbauer spectroscopy. By replacing a small fraction of the non-magnetic cations (i.e., Zn$^{2+}$ of the ZnO) by magnetic cations (i.e., Fe$^{3+}$ / Fe$^{2+}$ / Mn$^{2+}$) it is possible to dilute magnetic moments in the host semiconductor lattice. There is great interest in these materials because they represent a new class of semiconductors called Dilute Magnetic Semiconductors (DMS) [1], which can plausibly exhibit ferromagnetism at room temperature [2]. These compounds would be of high technological applicability in spintronics [3]. In this sense, the aim of accelerating Mössbauer spectroscopy measurements, obtaining well-resolved spectra for DMS's, De Souza et al. synthesized the iron acetate enriched in the 57Fe isotope [4].

Iron acetates are highly soluble in water and may easily decompose in nanostructured iron oxides [5] under appropriate heat treatments up releasing H$_2$O, acetic acid, acetone and CO$_2$. The thermal decomposition of iron or other inner transition metal acetates under different heat treatment conditions may lead to formation of several ultrafine oxides [6-8] with high technological applicability [9]. Some results for iron(III) [10] or iron(II) [11] acetates have shown that interesting magnetic and structural properties can be obtained from such relatively simple compounds. Jewur and Kuriacose [12] performed a systematic study of the thermal decomposition of ferric acetate that shows it decomposes to the hematite phase with activation energy of 94.98 kJ/mol.

In the present study, it was used the freeze-drying method in the processing of the precursor (FeAc). This technique is frequently used to dehydrate aqueous mixes resulting in a final product which maintaining the basic structure of the initial salt with fine or ultrafine solid particles that shows high homogeneity and chemical reactivity [13-15]. Any modification in mass of the sample is usually related to the water loss.
Taking advantage of the above-mentioned characteristics of acetates, a mixture of two (or more) acetates can also be processed (i.e., freeze-dry and thermally treated) to form a nanometric ceramics, stoichiometric composition or, optionally, cations of a metal in solid solution in the host matrix of another metal [4]. For example, when we make a mixture of the iron acetate with the zinc acetate freeze-dried and heat treated, result in ZnFeO solid solution magnetically doped.

The main purpose of this work was to characterize the morphology, the magnetic and structural properties of nanostructured iron acetate produced by freeze-drying. For to characterize the acetates (i.e., FeAc and FeAc-FD), we used Mössbauer Spectroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA-DSC) and Scanning Electron Microscopy (SEM).

2. MATERIAL AND METHODS

2.1 Sample preparation and Freeze-drying

Initially, the commercial iron(II) acetate, Fe(CH₃COO)₂ (FeAc), was homogeneously diluted in 20 ml of distilled-deionized water at room temperature (RT). Subsequently, the aqueous mixture was placed inside a glass flask in rotation and slowly frozen by immersion in liquid nitrogen. Finally, the flask was connected to the freeze-dryer, which consisted of a vacuum pump (Liotop, IP21) and a water trap (Liotop, L101). During the stage of freeze-dryer, the frozen sample was sublimed under low pressure (~ 250 μmHg) and temperature (~58 °C). The process for complete drying of the samples took approximately 14 hours resulting in a dry powder (FeAc-FD). After, all powders were subjected to heat treatment dynamic in an air synthetic atmosphere in a range of temperature of 22 °C until 600 °C.

2.2 Characterization techniques

X-ray diffraction

The crystalline structure of the as-received and freeze-dried acetates was determined by XRD, in a Shimadzu diffractometer (XRD-6000) at room temperature and working in the conventional geometry (i.e., Bragg-Brentano, θ - 2θ). It was utilized Kα of the copper tube (λ = 1.5406 Å) with tension of 40 kV and filament current of 30 mA. The diffractograms were taken in a range of 5° ≤ 2θ ≤ 80° with 0.02° and 5 s per step.

Scanning electron microscopy

To analyze the morphological aspect of the samples it has been used the Scanning Electron Microscopy technique (SEM) in a Shimadzu microscopy (SS 550 Superscan).

Thermal analysis

The thermal decomposition of the FeAc and FeAc-FD acetates (samples with mass around 9 mg contained in an alumina crucible) was studied by TGA/DSC techniques in a Netzsch thermal analyzer (model STA 409 PG/4/L Luxx) with synthetic air atmosphere (N₂ = 80% in flux of 40 mL/min.; O₂ = 20% in flux of 10 mL/min.). It was used the measurement of the empty crucible as reference to the baseline (to both TGA and DSC). The temperature was raised from RT (room temperature) up to 600 °C with five different rates of heating: β = 4, 8, 12, 16 and 20 °C/min.

Spectroscopy Mössbauer

The Mössbauer ⁵⁷Fe spectra were taken at RT by using a conventional spectrometer with source of ⁵⁷Co(Rh) moved in horizontal with a constant acceleration. The absorber was prepared to contain about 20 mg/cm² of iron acetate. It was utilized a spectrum of zero-valent α-Fe taken at room temperature for the calibration of the equipment.

3. RESULTS AND DISCUSSION

Figure 1 shows the X-ray diffractograms for the acetates (FeAc and FeAc-FD). The XRD of FeAc, Figure 1.a, shows well-defined crystalline peaks at low angles. On the other hand, the FeAc-FD presents a very different pattern of diffraction (Figure 1.b) from the one showed in the Figure 1.a. This indicates some reduction on crystallinity and a possible structural change of the freeze-dried acetate when compared to the acetate as received.

Figure 2 shows the microstructure of as-received (2.a and 2.b) and freeze-dried (2.c and 2.d) iron acetates in different magnifications. It is possible to see, by visual inspection, that the as-received iron acetate presented a preferably cylindrical morphology.
with diameters between 1 and 15 μm. However, for the freeze-dried iron acetate, it is possible to see a preferential nanosheets morphology with average thickness in nanoscale (i.e., < 100 nm). Around these results, we can conclude that the freeze-drying process modify both average size and shape of the precursor, leading the samples to the nanoscale that causes alterations in their physical and chemical properties making them more reactive [9]. Once the freeze-dried material has very little available water between acetate bonds, such alterations can be justified by the fact that the superficial area of the formed solid depends on the availability of water during the dehydration process [16].

Figure 1. X-Ray diffractograms for the acetate samples: (a) FeAc; (b) FeAc-FD.

Figure 2. Acetate microstructures: (a) and (b) FeAc; (c) and (d) FeAc-FD.

The Figure 3 shows the results of TGA/DSC analysis with heating rates $\beta = 4, 8, 12, 16$ and 20 °C/min for the acetates FeAc and FeAc-FD. It can be deduced that the endothermic events (in DSC) which occurred between 22 °C and 260 °C are associate to the decomposition of FeAc. The exothermic event with well-defined sharp peaks that occurred between 260 °C and 600 °C corresponds to the sample thermal decomposition, leading to formation of iron oxides. A verification of the TGA/DSC curves in Figure 3 reveals that the peaks move to higher temperatures when increased the heating rate and it complies with the law of general rate [17]. This shift to the right as the heating rate increases is also observed in the TGA curves. This may be attributed to the higher surface energy [8] of the large surface area in FeAc-FD.

Accordingly, to the heating rates of 4, 8, 12, 16 and 20 °C/min, the exothermic event for FeAc has shown maximum peaks around $T_\beta = 286$ °C, 304 °C, 312 °C, 320 °C, and 328 °C, respectively. For the exothermic event of FeAc-FD, characterized by the same heating rates, the maximum peaks occurred around $T_\beta = 275$ °C, 292 °C, 299 °C, 302 °C e 306 °C, respectively. One can see that in the exothermic events, the peak temperatures for FeAc-FD were lower than FeAc when we compare both of them regardless of the heating rate.

Figure 3.a shows that the mass loss observed at 400 °C (with rate $\beta = 12$ °C/min) in TGA curve of FeAc was 61.6%. Considering the decomposition of a stoichiometric anhydrous iron(II) acetate, Fe(CH$_3$COO)$_2$, into hematite the theoretical loss
would be 54%. As we can see, there is a pronounced divergence between the experimental and theoretical results. Face of this deadlock the calculations were made using the experimental results and it was found that FeAc shouldn’t have the structural formula as anhydrous, Fe(CH\(_3\)COO)\(_2\), but a mix of acetates that contains Fe\(^{2+}\) and Fe\(^{3+}\) like Fe(CH\(_3\)COO)\(_2\)-Fe(CH\(_3\)COO)\(_3\). The theoretical mass loss for the mix of acetates is 61% that is very close to the experimental value obtained.

The TGA data from Figure 3.b measured at 400 °C and \(\beta = 12 \, ^\circ\text{C/min}\) shows that the thermal decomposition (200 °C to 600°C) occurred with a mass loss of 44.3% for the FeAc-FD. This value is considerably lower than the seen in FeAc sample, which can be attributed to the lower amount of absorbed water in the freeze-dried sample, compared to the as-received sample.

![Figure 3. TGA/DSC curves obtained in different heating rates for acetates: (a) FeAc and (b) FeAc-FD.]

As we can see in DSC graphs, the freeze-dried acetates decompose at lower temperatures, which may be related to the fine powder morphologies. In the FeAc graph (Figure 3.a) is seen a decrease of the exothermic peaks when the dynamic temperature increases and it may be associated with the larger particles of the material, while in the FeAc-FD (Figure 3.b) we can see an increase of the peaks when it increases the dynamic temperature, so it may be related to the smaller particles. These results can represent higher formation of hematite when it decreases the particles size [18].

Figure 4 shows the straight that allows us to calculate the activation energy (\(E_a\)) of the acetates. The calculated activation energy for the shown exothermic events, according to the standard ASTM E698-11[17], were obtained using the angular coefficients values with support of Arrhenius equation [19]. The obtained activation energy of FeAc was \(E_a = 100,225 \, \text{kJ/mol}\). This value is close to the one obtained by Jewur and Kuriacose[7] for the ferric acetate (\(E_a = 94,98 \, \text{kJ/mol}\)). The activation energy for FeAc-FD was \(E_a = 127,824 \, \text{kJ/mol}\).

The Mössbauer spectrum of the FeAc-FD acetate, obtained in 300 K, is presented in Figure 5. The spectrum of FeAc-FD was adjusted with a typical doublet of Fe\(^{3+}\), i.e., \(\delta = 0,37 \, (\text{mm/s}), \Delta E_q = 0,75 \, (\text{mm/s})\) and \(\Gamma = 0,47 \, (\text{mm/s})\). It was not possible to adjust the Mössbauer spectrum of the FeAc which can be attributed to the fact that the Mössbauer output file is corrupted. This would be a confirmation of the inhomogeneity of Fe(CH\(_3\)COO)\(_2\), showing that there is in fact a mixture of acetates, containing iron in the ferrous and ferric states, as already discussed in the analysis DSC/TG.
4. CONCLUSION

The results for the present investigation reveal that the Freeze-drying process changes the morphology of micrometric cylindrical for nanometric sheets of high aspect ratio. This process is also effective in total structural dehydration of iron(II) acetate. The initial acetate, after processing by freeze-drying, changed its crystal structure and oxidation state, from the initial ferrous to the ferric state. It was observed that the freeze-dried material produces solid products at lower temperatures, indicating greater reactivity, which may be explained by the high surface area powders. Calculations using Arrhenius equation provide us lower activation energy for AcFe due to the energy was absorbed in the endothermic event.

5. ACKNOWLEDGMENTS

The authors thank CAPES for their financial support and also thank the Complex of Research Support Centers of the State University of Maringá for conducting some experiments.

6. REFERENCES AND NOTES